Dosimetric analysis of the effect of MLC leaf width on parotid sparing for head and neck cancers treated using a simulataneous integrated boost IMRT technique.

#### Hasan Murshed, M.D., M.S.

Department of Radiation Oncology The University of Alabama at Birmingham

### Introduction

- Case presentation 1
  - recurrent nasal melanoma
- Case presentation 2
  - H&N SCCa
  - RT side effect xerostomia
  - Minimizing side effects
  - WR 2721
  - IMRT
  - Other

- Compare conventional vs IMRT
- Biological model for complication probability
- Compare 5 mm vs 10 mm leaf width
- Conclusions/Future



- IMRT is a new technology in RT that delivers radiation precisely to the tumor while relatively sparing the surrounding normal tissues
- Combines two advance concepts to deliver 3D conformal radiation
  - inverse treatment planning with computer optimization
  - computer controlled intensity modulation of the radiation beam
- Potential advantages
  - to create multiple targets
  - multiple critical avoidence
  - new accelerated fractionation scheme
- Has potential in radiation oncology in the the 21st century
  - Can be used to spare parotid gland in HN cancer pts

### **3D CRT vs IMRT - Case Presentation**

- 71 YOM
- H/O Malignant melanoma of the nasal cavity 1998
- S/p resection, s/p post op RT to 5000 cGy
- Now with recurrent melanoma at the nasal cavity, unresectable
- Symptomatic with breathing difficulty and bleeding
- Metastatic work up negative
- Chemotherapy failed to prevent progression
- <u>Referred for repeat radiation therapy.</u>

#### **3D CRT vs IMRT - Case Presentation**

#### PROBLEMS

- Repeat radiation for recurrent melanoma
- Critical structures eyes, optic nerves, chiasm, brain stem
- Coverage of PTV vs sparing of the critical structures

# **3D CRT Beam Geometry**





# **3D CRT - PTV coverage**



# **3D CRT - Critical organ sparing**













 IMRT made retreatment feasible of this recurrent nasal cavity melanoma to a therapeutic dose while maintaining the critical tissue tolerances.

# **Case presentation**

#### • 58 yom

- c/o dyphagia, odynopgagia, wt loss x4-5 m
- No SOB, ear pain, bleeding, paresthesia
- Current smoker, 40 PY smoke hx, occasional alcohol use
- P/E
  - no neck LN
  - a 3x4 cm ulcerative exophytic lesion of the rt retromolar trigone
- CT neck large mass involving both tonsils, tongue, soft palate bilat, rt post triangle and lt parapharyngeal LN
- Bx moderately diff SCCa

# **Case presentation/ CT**





# **Case presentation/ CT**





### **Case presentation/ Pathology**







- Salivary glands
- Squamous cells
- Mitotic figure



- 58 yom, rt tonsil mod diff SCCa T4N2CM0, IVA
- Received concurrent chemoRT
- RT dose
  - primary : 200 cGy/fx to 7000 cGy
  - rt. post neck : 200 cGy/fx to 6000 cGy
  - It. post neck : 200 cGy/fx to 5000 cGy
- Chemo CDDP/5FU x4 cycles
- COT 3/01
- Last F/U on 5/01
  - clinically NED
  - most acute RT side effects resolved
  - continues to have dry mouth RTOG grade 2



Estimated New Cancer Cases and Deaths by Sex for All Sites, United States, 2000\*

|                       | Estimated     | New Ca  | ses     | Estimated Deaths |         |         |  |
|-----------------------|---------------|---------|---------|------------------|---------|---------|--|
|                       | Both<br>Sexes | Male    | Female  | Both<br>Sexes    | Male    | Female  |  |
| All Sites             | 1,220,100     | 619,700 | 600,400 | 552,200          | 284,100 | 268,100 |  |
| Oral cavity & pharynx | 30,200        | 20,200  | 10,000  | 7,800            | 5,100   | 2,700   |  |
| Tongue                | 6,900         | 4,500   | 2,400   | 1,700            | 1,100   | 600     |  |
| Mouth                 | 10,900        | 6,500   | 4,400   | 2,300            | 1,300   | 1,000   |  |
| Pharynx               | 8,200         | 5,900   | 2,300   | 2,100            | 1,500   | 600     |  |
| Other oral<br>cavity  | 4,200         | 3,300   | 900     | 1,700            | 1,200   | 500     |  |

- 60, 400 new cases of H&N cancer in USA
- 15, 600 deaths in 2000
- Most pts will undergo RT and may experience toxic side effects.
  - Early fatigue, skin changes, mucositis, loss of appetite
  - Late xerostomia, tissue necrosis

### **Xerostomia**

- Xerostomia is the prominent long term RT side effect in the H&N ca pts, dependent on
  - radiation field
  - radiation dose
  - initial volume
  - function of salivary gland
- Irradiated salivary glands show
  - acinar atrophy and chronic inflammation



- Permanent xerostomia affects QOL, causing
  - dental caries, difficulty chewing, swallowing, speaking, increased incidence of oral candidiasis and reflux esophagitis

### **Xerostomia**

#### • The goals of treating xerostomia are to

- improve comfort
- maintain mucosal integrity
- prevent infection
- sustain nutrition
- ensure dental preservation.
- Treatments
  - siologogues pilocarpine
  - radioprotectant WR 2721
  - parotid sparing radiation 3D/IMRT technique
  - Others surgery, acupuncture

- Reported on 15 H&N ca pts, prospectively treated using 3D planning
- Designed radiation fields that would treat target, sparing the parotid gland
  - GTV=gross tumor/LN, CTV=GTV+1cm, PTV=CTV+0.3cm
  - Secondary PTV=LN at risk+0.3cm
  - Typically 7-8 beams were needed
  - Including photons/electron beams
- Salivary gland function was assessed
  - By sialometry
  - subjective questionnaire



#### Results

- the spared gland mean average dose
- The nonspared gland mean average dose
  58 <u>+</u> 5 Gy
- The flow rate from spared gland reduced to 50% of the baseline
- The flow rate from the nonspared gland remained nonmeasurable

21 <u>+</u> 8 Gy

- 3 months after RT 40% no, 13% mild/mod, 33% high xerostomia

- Conclusion
  - Partial parotid gland sparing is possible by 3D planning for HN ca pts
  - Most pts treated had no or mild xerostomia

#### Mohan et al., 1999

• New fractionation strategy for clinical trials/routine use of IMRT of HN ca pts

- Simultaneous integrated boost (SIB) designed to simultaneously deliver different dose levels to different tissues of the HN region in a single treatment session
- Superior dose distribution, more efficient, no electron/s'clav field

| Table 4. Nominal doses corresponding to normalized total doses* |             |                                         |                                             |                                         |                                             | dia oron wa azys.<br>Tha seementiache   |                                             |
|-----------------------------------------------------------------|-------------|-----------------------------------------|---------------------------------------------|-----------------------------------------|---------------------------------------------|-----------------------------------------|---------------------------------------------|
| Target                                                          | NTD<br>(Gy) | Nominal dose<br>in 25<br>fractions (Gy) | Nominal dose/fx<br>for 25 fractions<br>(Gy) | Nominal dose<br>in 30<br>fractions (Gy) | Nominal dose/fx<br>for 30 fractions<br>(Gy) | Nominal dose<br>in 35<br>fractions (Gy) | Nominal dose/fx<br>for 35 fractions<br>(Gy) |
| Electively<br>treated nodes                                     | 50.0        | 50.0                                    | 2.00                                        | 54.0                                    | 1.80                                        | 57.9                                    | 1.65                                        |
| Regional disease                                                | 60.0        | 55.9                                    | 2.24                                        | 60.0                                    | 2.00                                        | 64.0                                    | 1.83                                        |
| Primary                                                         | 70.0        | 61.7                                    | 2.47                                        | 65.9                                    | 2.20                                        | 70.0                                    | 2.00                                        |
| Primary                                                         | 80.0        | 67.4                                    | 2.69                                        | 71.7                                    | 2.39                                        | 75.9                                    | 2.17                                        |
| Primary                                                         | 90.0        | 73.0                                    | 2.92                                        | 77.5                                    | 2.58                                        | 81.8                                    | 2.34                                        |

\* Isoeffect calculations utilized  $\alpha/\beta = 20$  and doubling time = 4 days.

Int J Radiat Oncol Biol Phys 46:619-630, 2000

#### Wu et al., 1999

- Investigated the potential of IMRT to achieve adequate sparing of parotids and to escalate nominal and/or biologically effective dose
- Four HN pts
  - T2-T4 N0-N3 dz
  - GTV=gross dz
  - elective irradiation=all LN I-IV
  - post neck/s'clav in IMRT
- IMRT
  - 9 coplanar beams/equiangular spacing
  - MLC sliding window technique
  - SIB fractionation
    - 70 Gy/2.5 Gy to the tumor
    - 50.4 Gy/1.8 Gy to the LN

#### Wu et al., 1999



 Conclusion: compared with 3D, IMRT reduced parotid dose while allowing dose escalation

# **Compare conventional vs IMRT**

- Case 1
- conventional plan





#### **Compare conventional vs IMRT**

Conventional 3 fld RT DVHs



• 120 leafs SIB IMRT DVHs



- 88 HN ca pts treated with parotid sparing 3D/static IMRT, the mean dose and partial parotid volumes receiving specified doses were determined, the nonstimulated/stimulated saliva flow rates were measured
- These data were then fitted into a NTCP model by Lyman, to find the parameters to quantify the probability of severe RT late effects
- The Lyman model uses four parameters to represent the NTCP of an organ irradiated with uniform dose to a partial volume
  - TD50, n, m, Vref

#### Results @ 12 m post RT

- unstimulated saliva flow rate 15% of the baseline
- stimulated saliva flow rate 56% of the baseline
- threshold for unstimulated/stimulated saliva mean dose 24 Gy/26 Gy
- The model predicted severe complication accurately in 35/37 cases



- Conclusion
  - NTCP model can predict complication probability, which is a function of dose/volume
  - A planning goal of parotid gland mean dose of < 26 Gy, is needed to retain parotid gland function



| authors             | nuber of | spared gland | spared gland | CR  | LC  | OS    | Xerosto | xerosto |
|---------------------|----------|--------------|--------------|-----|-----|-------|---------|---------|
|                     | pts      | mean dose    | saliva flow  |     |     | 4 yrs | gr 0/1  | gr 2    |
|                     |          | (Gy)         | (ml/min)     | (%) | (%) | (%)   | (%)     | (%)     |
| Eisbruch et al 1996 | 15       | 21 +/- 8     | 0.5          |     |     |       | 53      | 33      |
| Butler et al 1999   | 20       | 21           |              | 95  |     |       | 55      | 45      |
| Sultanem et al 2000 | 35       | 29           |              |     | 100 | 94    | 65      | 35      |
| Chao et al 2001     | 27       | 30 +/- 9     | 0.6          |     |     |       | corrl   | corrl   |

- Purpose: to examine the effect of the MLC leaf width on parotid sparing for HN ca patients
- SIB IMRT technique
- Delivery
  - Sliding window MLC
  - 5 mm vs. 10 mm leaf width
- End points
  - Physical dose distribution
  - Predicted NTCP

- HN ca pts with T2-T4 N0-N2c selected for planning
  - PTV1 = gross dz/enlarged LN + 1.0 cm + 0.3 cm
  - PTV2 = LN at risk + 0.3 cm
- Defined in a single plan for 30 fractions using 6 MV photons
  - PTV1 dose 2.3 Gy/fx to 69 Gy
  - PTV2 dose 1.8 Gy/fx to 54 Gy
  - Planning goal was to restrict contralateral parotid gland mean dose < 26 Gy</li>

- 9 equidistance coplanar beams were used
- 2 inverse plans were generated for each pt, one for each MLC (5 vs 10 mm)
- Leaf motions generated
- Beam fluence computed







 Because of differences observed in physical dose to the parotid gland an NTCP model based upon clinical parameters of Eisbruch et al was used for comparison

|       |                  | average mean doses |                         |                  |
|-------|------------------|--------------------|-------------------------|------------------|
| MLC   | PTV1             | ipsi PTV2          | cont PTV2               | spinal cord      |
| width | dose (Gy)        | dose (Gy)          | dose (Gy)               | dose (Gy)        |
|       |                  |                    |                         |                  |
| 5 mm  | 71.0 (69.8-73.3) | 61.9 (59.6-63.4)   | <b>55.6</b> (55.1-55.9) | 34.8 (29.5-39.6) |
| 10 mm | 71.7 (70.8-73.4) | 62.0 (59.4-63.2)   | 55.8 (55.7-55.9)        | 34.9 (30.8-40.3) |

#### Results

- Both MLC leaf widths maintained target volume coverage
- Critical organ dose goal

| á     | average mean doses |                 |  |
|-------|--------------------|-----------------|--|
| MLC   | spared parotid     | NTCP of         |  |
| width | dose (Gy)          | parotid (%)     |  |
|       |                    |                 |  |
| 5 mm  | 21.0 (19.9-22.9)   | 8.2 (5.5-14.2)  |  |
| 10 mm | 22.3 (19.9-24.9)   | 13.7 (4.9-25.2) |  |

#### Results

- Both MLC leaf (5 mm, 10 mm) spared the contralateral parotid glands
- Predicted complication probability was 5% better with 5 mm leaf width

- Conclusion
  - The goal of parotid sparing was met for all levels of case complexity using either 5 mm or 10 mm leaf width
  - NTCP estimates suggested a modest reduction in xerostomia using smaller leaf width

- Coronal color wash
- 5 mm leaf



• 10 mm leaf



- Sagittal color wash
- 5 mm leaf



• 10 mm leaf



- Transverse color wash
- 5 mm leaf



• 10 mm leaf



- PTV DVHs
- PTV1



#### Rt PTV2



#### Lt PTV2



- Parotid gland DVHs
- Case 1



• Case 2



#### • Case 3















| MLC leaf                 | Mean ion chamber dose (cGy) |                |  |  |
|--------------------------|-----------------------------|----------------|--|--|
| width                    | Plan                        | Measurement    |  |  |
| <b>5 mm</b> (120 leaves) | 55.7                        | 73.5           |  |  |
| <b>10 mm</b> (80 leaves) | 61.7                        | 79.5           |  |  |
| Diff                     | 6 <b>(-10%)</b>             | 6 <b>(-9%)</b> |  |  |

- Difference between the 5 mm vs 10 mm measured data agrees with the difference of the Helios planning data.
- 120 leaf plan delivers about 9% less dose than the 80 leaf plan.



- Xerostomia is a significant problem for HN cancer pts receiving radiation therapy
- Managements of xerostomia includes salivary gland stimulant, radioprotector, surgical removal of the gland, acupuncture, 3D/IMRT technique





- IMRT significantly spares the contralateral parotid gland and avoids xerostomia for HN cancer pts
- IMRT dose distribution is more conformal when given as SIB, more efficient and may be biologically more effective
- A mean parotid gland dose < 26 Gy should be the planning target dose</li>





 While both 5 mm and 10 mm width MLC spared the contralateral parotid gland, the NTCP estimates suggested a modest reduction of xerostomia using smaller leaf width, in selected cases

#### Conclusion/ F/U on pt.

- Last F/U on 5/01 clinically NED, most of his acute RT side effects resolved, continue to have dry mouth RTOG grade 2
- The parotid sparing SIB IMRT planning might have reduced the chance of xerostomia in our pt

#### **RTOG H-0022**

- Phase I/II study of conformal/IMRT for T1-T2 N0-N2 oropharyngeal ca pts
  - to assess feasibility of adequate target coverage and sparing of the major salivary gland
  - to determine rate and pattern of LRF
  - to determine acute and late side effects
- PTV1 = gross tumor + 1 2 cm + 0.5 cm, PTV2 = LN at risk + 0.5 cm
  - PTV1 = 2.2 Gy/fx to 66 Gy, PTV2 = 1.8 Gy/fx to 54 Gy, a boost 4-6 Gy to gross tumor is optional, QD 5d/wk, 6-6.5 wks
  - salivary gland dose = less than 26 Gy/ 50% gland less that 30 Gy
- Accrual target is 64 pts needed to reduce xerostomia by 50%, LRC 65%



 I am grateful for the helpful support of all my colleagues at the Department of Radiation Oncology, UAB at Birmingham.
 I would like to thank

R. A. Popple, Ph.D J. Duan, Ph. D J. A. Bonner, M. D. Mark Hyatt, C. M. D J. B. Fiveash, M. D.

# The END

