
# An Overview of Radiotherapy for Healthcare Professionals

The American Society for Therapeutic Radiology and Oncology



### Introduction

- Radiation has been an effective tool for treating cancer for over 100 years
- More than 60 percent of patients diagnosed with cancer will receive radiation therapy as part of their treatment
  - Today, more than 1 million cancer patients are treated annually with radiation
- Radiation oncologists are cancer specialists who manage cancer patients with radiation for either cure or palliation



Patient being treated with modern radiation therapy equipment.

### Overview

- What is the physical and biological basis for radiation?
- What are the clinical applications of radiation in the management of cancer?
- What types of radiation are available?
- What is the process for treatment?
  - Simulation
  - Treatment planning
  - Delivery of radiation
- Summary

# A Brief History of Radiation

- Wilhelm Roentgen discovered X-rays on November 8, 1895, while experimenting with a gasfilled cathode tube
  - He noted an image of the bones of his hand projected on a screen when placed between the tube and the fluorescent screen
  - He wrote a carefully reasoned explanation of the phenomenon within two months



Early radiograph taken by Roentgen, January, 1896.

# A Brief History of Radiation, Pt II

In 1896, Henri Becquerel discovered radioactivity while experimenting with pitchblende (i.e., uranium salts) and a shrouded photographic plate

- Pierre and Marie Curie announced the discovery of radium and polonium in 1898
- These elements emitted  $\alpha$ ,  $\beta$  and  $\gamma$  rays

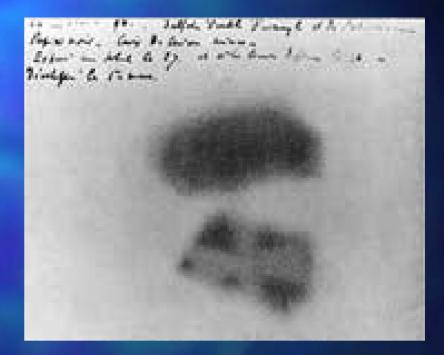
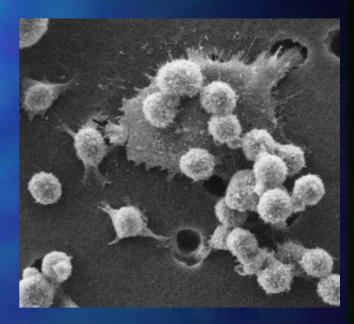



Image of Becquerel's photographic plate fogged by exposure to radiation from uranium salts.


### X-rays and Gamma Radiation

Both are forms of *ionizing* radiation

- X-rays and γ-rays are collectively referred to as photons and are considered a form of electromagnetic radiation
  - Energy is produced when an accelerated electron strikes a target, decelerates and emits X-rays
  - Gamma-radiation occurs when an unstable nucleus gives off excess energy in the form of γ-rays as it decays to a more stable form

# Radiotherapy at the Cellular Level

- Radiation used for cancer treatment is called *ionizing radiation* because it forms ions as it passes through tissues and dislodges electrons from atoms
  - Ions are atoms that have acquired an electrical charge through the gain or loss of an electron
    - Ionization, in turn, can cause cell death or a genetic change
- Molecular damage may occur through direct or indirect ionization
  - DNA is the most important target molecule
  - Water is the primary mediator of indirect ionization by formation of free radicals



An image of cancer cells.

# Effects of Ionizing Radiation

- Ionization within cells results in physical, chemical and biological changes
  - Indirect Effect:
    - Damage to DNA molecule by formation of free radicals
      - Complex chain of chemical reactions in the cell resulting in toxic changes which adversely affect the cell
  - Direct Effect:
    - Damage to DNA molecule
      - Breakage of one or both chains of DNA molecule
      - Breakage of hydrogen bond
      - Faulty cross-linkage

The net result on cancer cells is an inability to grow and subsequently reproduce

# What Is the Biologic Basis for Radiation Therapy?

- Radiation therapy works by damaging the DNA within cancer cells and destroying their ability to reproduce
  - When the damaged cancer cells are killed by radiation, the body naturally eliminates them
  - Normal cells can be affected by radiation, but they are able to repair themselves
    - All tissues have a tolerance level, or maximum dose, beyond which irreparable damage may occur
- Although some cancers may be treated with radiation alone, it is often combined with other treatments, such as surgery and/or chemotherapy



Modern treatment planning helps spare more healthy tissue from radiation.

# A Basic Radiobiologic Principle

- Fractionation, or dividing the total dose into small daily fractions over several weeks, produces better tumor control than a single large fraction
  - Experiments performed in Paris in the 1920s and 1930s confirmed this principle

Fractionation spares normal tissue through repair and repopulation while increasing damage to tumor cells through redistribution and reoxygenation

# The Four R's of Radiobiology

- The modern basis for fractionation is better understood and more complex
  - Repair of sublethal damage to cells between fractions caused by radiation
  - Repopulation or regrowth of cells between fractions
  - Redistribution of cells into radiosensitive phases of cell cycle
  - Reoxygenation of hypoxic cells to make them more sensitive to radiation

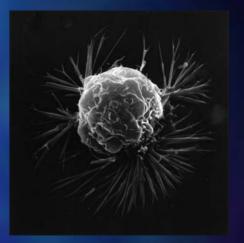
# **Clinical Uses for Radiation Therapy**



Painless external beam radiation treatments are usually scheduled five days a week and continue for one to ten weeks.

Therapeutic radiation serves two major functions

To cure cancer


- Destroy tumors that have not spread.
- Reduce the risk that cancer will return after surgery or chemotherapy

#### To reduce or palliate symptoms

- Shrink tumors affecting quality of life, e.g., a lung tumor causing shortness of breath
- Alleviate pain by reducing the size of a tumor

# **Radiation Therapy for Cancer**

- Radiation therapy plays a major role in the management of many common cancers
  - Breast, prostate, lung, colorectal, pancreas, esophagus, head and neck, brain, skin, gynecologic, lymphomas, bladder cancers and sarcomas
    - The four most commonly treated malignancies are lung, breast, prostate and colorectal cancers
      - Radiotherapy is often used in the multimodality management of pediatric malignancies
    - Treatment may be for cure or for palliation
  - There is a small risk that radiation may cause a secondary cancer many years after treatment
    - This risk is balanced by the potential for curative treatment with radiotherapy



A breast cancer cell.

### **Measuring Radiation Doses**

- Absorbed dose is the quantity of radiation absorbed from a beam per unit mass of absorbing material
  - The rad, or "radiation absorbed dose," is the traditional basic unit, and is defined as 100 ergs absorbed/gm
  - The modern unit is the Gray (Gy), and is defined as 1 joule absorbed/kg
    - Dose may be prescribed as Gy or cGy
      - 1 Gy = 100 cGy (centigray)
      - -1 cGy = 1 rad

# The Radiation Oncology Team

#### Radiation Oncologist

The doctor who prescribes and oversees the radiation therapy treatments

#### Medical Radiation Physicist

Ensures that treatment plans are properly tailored for each patient, and is responsible for the calibration and accuracy of treatment equipment

#### Dosimetrist

Works with the radiation oncologist and medical physicist to calculate the proper dose of radiation given to the tumor

#### Radiation Therapist

 Administers the daily radiation under the doctor's prescription and supervision

#### Radiation Oncology Nurse

Interacts with the patient and family at the time of consultation, throughout the treatment process and during follow-up care

# **Process of Care: Initial Steps**

### Patients are referred for consultation

- This is usually done after a tissue diagnosis has been established
  - Treatment plan is recommended by the radiation oncologist
    - Care is coordinated with other physicians

### Simulation is carried out

- Provides a blueprint for treatment
  - Usually done as a treatment planning CT scan
    - Patient set up in the treatment position
    - Immobilization may be used to ensure daily reproducibility



Dose distribution for a man with prostate cancer.

# Process of Care: Treatment Planning

Sophisticated software is used to carefully derive an appropriate treatment plan for each patient

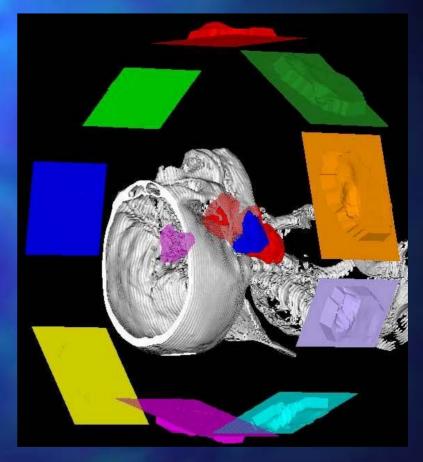
- Computerized algorithms enable the treatment plan to spare as much healthy tissue as possible
- Physicist and dosimetrist work together create the optimal treatment plan for each individual patient



Radiation oncologists work with medical physicists and dosimetrists to plan treatment to deliver a maximum dose of radiation to the tumor and avoid healthy tissue.

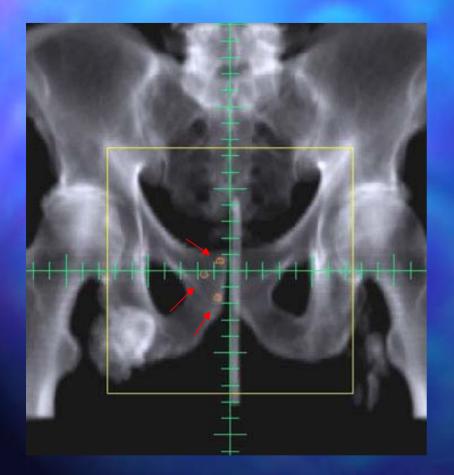
# Process of Care: Delivery of Radiation Therapy




The type of treatment used will depend on the location, size and type of cancer.

Radiation therapy can be delivered two ways

- External beam radiation therapy typically delivers radiation using a linear accelerator
- Internal radiation therapy, called *brachytherapy*, involves placing radioactive sources into or near the tumor

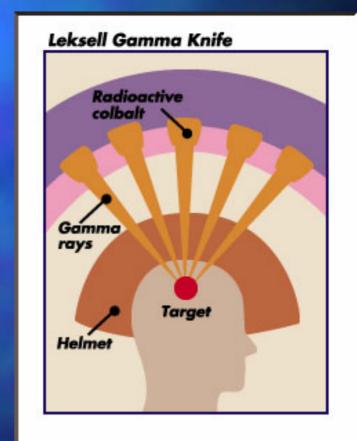

# Types of External Beam Radiation Therapy

- Three-dimensional conformal radiation therapy (3D-CRT)
  - Uses CT or MRI scans, creating a 3-D picture of the tumor
    - Improved precision minimizes normal tissue damage
- Intensity modulated radiation therapy (IMRT)
  - A sophisticated form of 3D-CRT
  - Radiation is broken into many "beamlets," the intensity of each can be adjusted individually
    - IMRT is the most important advance in radiotherapy in more than 40 years



Nine-field IMRT head and neck 3-D schematic.

# Image-Guided Radiation Therapy




Specially designed linear accelerators for IGRT

- Capable of performing CT scans or standard X-ray images
  - Implanted *fiducial* markers are aligned daily
    - Ensures daily reproducibility to accurately treat the target
    - Should further decrease treatment-related morbidity

# Stereotactic Radiotherapy

- External fiducials allow the radiation oncologist to focus very thin beams of radiation at small tumors
  - When used in a single treatment for tumors in the head, it is called stereotactic radiosurgery (SRS)
  - When used in multiple treatments or for other parts of the body, it's called stereotactic body radiation therapy (SBRT)



### Stereotactic Body Radiotherapy

### Another format for IGRT

- Similar to stereotactic radiosurgery (SRS)
- High doses of radiation are delivered using tiny fields over three to five days
  - Usually extracranial sites
    - Although *fractionated* intracranial SRS would qualify as SBRT
    - Spine, liver metastases, adrenal metastases, lung metastases and pancreas are all potential sites
      - Prostate cancer, primary lung cancer and hepatocellular carcinomas being investigated
    - Respiratory gating used for lung and abdominal tumors
      - Allows radiation to be delivered only during specific periods in the breathing cycle

# Particle Therapy

#### Proton Beam Therapy

- Uses protons rather than X-rays to treat cancer
- Allows doctors to focus most of the radiation dose at a certain depth within the body, which better spares nearby normal tissue

#### Neutron Beam Therapy

- A specialized form of radiation therapy used to treat certain tumors that are very difficult to manage using conventional radiation therapy
- Neutrons have a greater biologic impact on the tumor than a similar dose of conventional radiation therapy
- These treatments are only available in a few locations in the U.S.

# **Internal Radiation Therapy**

- Radioactive sources are implanted into the tumor or surrounding tissue
  - Commonly called *brachytherapy* 
    - "Brachy" is Greek for "short distance"
  - Purpose is to deliver high doses of radiation to the desired target while minimizing the dose to surrounding normal tissues
    - Radioactive sources used are thin wires, ribbons, capsules or seeds.
      - Isotopes used include  $^{125}I$ ,  $^{103}Pd$ ,  $^{192}Ir$ ,  $^{137}Cs$
    - These can be either permanently or temporarily placed in the body
  - Brachytherapy itself is not painful, but the applicators may cause discomfort





Radioactive seeds for a permanent prostate implant, an example of low-dose-rate brachytherapy.

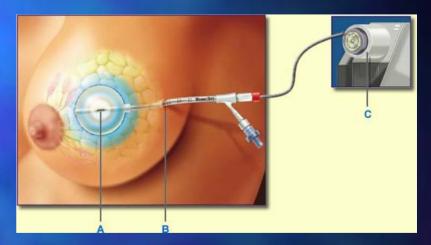
# Types of Brachytherapy

### Intracavity implants

- Radioactive sources are placed near the tumor (cervix, trachea)
- Interstitial implants
  - Sources placed directly into the tissue (prostate, vagina)

#### Intra-operative implants

- Surface applicator is in direct contact with the surgical tumor bed (soft tissue sarcoma)
  - Procedures often require anesthesia and brief hospitalization
  - Radiation delivered to the site through specially designed applicators or catheters


## **Dose Rate for Brachytherapy**

#### ■ Low-Dose-Rate (LDR)

- Radiation delivered over the course of 48 to 120 hours
  - Gynecologic, breast, head and neck, and prostate cancers may be treated with lowdose-rate brachytherapy

#### High-Dose-Rate (HDR)

- High energy source delivers the dose in a matter of minutes rather than days
  - Gynecologic, breast and some prostate implants may use use high-dose-rate brachytherapy



HDR brachytherapy for breast cancer using MammoSite catheter (B) with an Iridium-192 source (A) and a high-dose-rate afterloader (C). This is an example of a temporary high-dose-rate implant.

### **Brachytherapy Implant Duration**

Implants may be either permanent or temporary

- Temporary implants are left in the body for several hours to several days
  - Patient may require hospitalization during the implant depending on the treatment site (e.g., cervix)
  - Examples include low-dose-rate gyn implants and high-dose rate prostate or breast implants
- Permanent implants release small amounts of radiation over a period of several months
  - Patients receiving permanent implants may be minimally radioactive and should avoid close contact with children or pregnant women
    - They will receive very specific instructions on safety from their patient care team
  - Examples include low-dose rate prostate implants ("seeds")

# Systemic Radiation Therapy

Radiation can also be delivered by an injection.
Radioactive particles can be dissolved in a small amount of fluid and injected into a blood vessel
Metastron (<sup>89</sup>Strontium) and Quadramet (<sup>153</sup>Samarium) are radioactive isotopes used for treating bone metastases
The radioactive isotope is absorbed primarily in cancer cells

Radioactive isotopes may also be attached to an antibody targeted at tumor cells

- This approach is useful in the treatment of certain lymphomas
  - Examples include Bexxar and Zevalin

# Palliative Radiotherapy

- Many cancer patients receive radiotherapy for symptom relief
- Commonly used to relieve pain from bone cancers
  - About 50 percent of patients receive total relief from their pain
  - 80 to 90 percent of patients will derive some relief
- Other palliative uses:
  - Spinal cord compression
  - Vascular compression, e.g., superior vena cava syndrome
  - Bronchial obstruction
  - Bleeding from gastrointestinal or gynecologic tumors
  - Esophageal obstruction



Radiation can provide relief for pain.

### **Common Radiation Side Effects**



Unlike the systemic side effects from chemotherapy, radiation therapy usually only impacts the area that received radiation.

Side effects are limited to the area treated and usually resolve 2-6 weeks post radiation

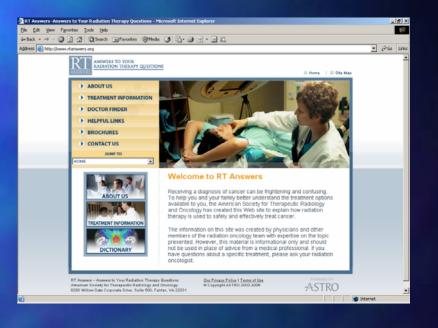
- Breast swelling, skin irritation
- Abdomen nausea, vomiting, diarrhea
- Chest cough, shortness of breath
- Head and neck taste alterations, dry mouth, mucositis, skin irritation
- Brain hair loss, scalp irritation
- Pelvis diarrhea, cramping, urinary frequency, vaginal irritation
- Fatigue is often seen when large areas are irradiated
  - Breast, abdomen, pelvis, whole brain

# Fast Facts About Radiation Therapy and Cancer

- Nearly two-thirds of all cancer patients will receive radiation therapy during their illness.
- In 2005, over 1 million patients were treated with radiation.
- In 2005, patients made nearly 24 million treatment visits to more than 2,000 hospitals and freestanding radiation therapy centers.

Three cancers – breast, prostate and lung cancer – make up nearly 60% of all patients receiving radiotherapy.
The average radiation oncologist sees between 200 and 300 patients annually.

# Summary


Radiotherapy is a well established modality for the treatment of numerous malignancies Most common: breast, lung, prostate, colorectal Treatment is safe, quick and painless with tolerable short term side effects Morbidity localized to area irradiated Radiation oncologists are specialists trained to treat cancer with a variety of forms of radiation

External beam, brachytherapy, stereotactic

### For More Information...

The American Society for Therapeutic Radiology and Oncology (ASTRO) can provide information on radiation therapy.

Visit <u>www.rtanswers.org</u> to view information on how radiation therapy works to treat various cancers.

